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A viscoplastic model of creep in shale

(January 30, 2020)

GEO-2018-0700

Running head: Viscoplastic model of creep

ABSTRACT

We develop a viscoplastic model that reproduces creep behavior and inelastic deformation of rock

during loading–unloading cycles. We use a Perzyna-type description of viscous deformation that

derives from a maximization of dissipated energy during plastic flow, in combination with a modi-

fied Cam-clay model of plastic deformation. The plastic flow model is of associative type, and the

viscous deformation is proportional to the ratio of driving stress and a material viscosity. The

proposed model does not rely on any explicit time parameters and, therefore, it is well-suited

for both standard and cyclic loading of materials. We validate the model with recent triaxial ex-

periments of time-dependent deformation in clay-rich (Haynesville formation) and carbonate-rich

(Eagle Ford formation) shale samples, and show that the deformation during complex, multiscale

loading–unloading paths can be reproduced accurately. We elucidate the role and physical meaning

of each model parameter, and infer their value from a gradient-descent minimization of the error be-

tween simulation and experimental data. This inference points to the large, and often unrecognized,

uncertainty in the preconsolidation stress, which is key to reproducing the observed hysteresis in

material deformation.
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INTRODUCTION

Considering advances in observational tools, experiments, modeling methods, and computational

resources, geological models are becoming increasingly complex, taking into account nonlinear

behavior and coupled phenomena (Settari and Mourits, 1998; Thomas et al., 2003; Lewis et al.,

2003; Segura and Carol, 2008; Rutqvist et al., 2008; Braun et al., 2008; Aagaard et al., 2013; Jha

and Juanes, 2014; Glerum et al., 2018). Rock deformation is responsible for a wide range of ge-

ological processes such as compaction of reservoirs and subsequent changes in their performance,

subsidence, stability of faults, and hydraulic fracturing. To better understand these processes and

more accurately simulate them, the use of nonlinear mechanical models of rock is required. While

modeling of elastic time-dependent deformation (viscoelastic deformation) is a rather mature topic

(Rundle and Jackson, 1977; Yang, 2000; Hagin and Zoback, 2004a,b; Mavko and Saxena, 2016),

modeling of inelastic time-dependent deformation is currently plagued with limitations. Inelastic

time-dependent deformation in reservoir rocks, or creep, causes wellbore instability, changes to the

hydraulic fracturing stimulation response, and changes in the state of stress in sedimentary basins

at different time scales (Nakken et al., 1989; Leong and Chu, 2002; Sone and Zoback, 2013a,b;

Cao et al., 2014; Rassouli and Zoback, 2018). To accurately estimate the amount of subsidence,

compaction and change in the state of stress due to creep, this viscoplastic deformation should be

included in geomechanical models (De Waal and Smits, 1988; Dudley et al., 1998; Tutuncu et al.,

1998).

Because of its central importance to reservoir performance and fault behavior, creep in rocks has

received increasing attention from an experimental standpoint (Amitrano and Helmstetter, 2006; Gr-

gic and Amitrano, 2009; Heap et al., 2011; Sone and Zoback, 2013a,b; Reber et al., 2014; Hao et al.,

2014; Geng et al., 2017). Our recent series of short- and long-term cyclic creep experiments on clay-

2
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and carbonate-rich shales (Rassouli and Zoback, 2018) properly differentiate time-independent from

time-dependent deformation, allowing us to revisit viscoplastic modeling of rocks. In the proposed

model, however, we do not consider viscoplastic effects that can possibly emanate from the pore

fluid (e.g., Borja and Choo, 2016), or other deformation mechanisms due to chemical changes in

the pore fluid, which can be important for clay-rich materials.

Modeling of viscoplastic deformations in soils and rocks has a long history (Finnie and Heller,

1959; Perzyna, 1966; Scholz, 1968; Borja and Kavazanjian, 1985; Wang et al., 1997; Dudley et al.,

1998; Revil, 1999; Vermeer and Neher, 1999; Yang, 2002; Shao et al., 2003; Castelnau et al., 2008;

Brantut et al., 2012). In early studies (Finnie and Heller, 1959; Scholz, 1968; Carter et al., 1981;

Dudley et al., 1998), the viscoplastic deformation was modeled through an explicit time-dependent

power-law function, intended to represent formation of micro-cracks in the rock (see also Borja and

Kavazanjian (1985)). In many applications, such as creep modeling of sedimentary rocks, power-

law models remain popular (Vermeer and Neher, 1999; Yin et al., 2010), and continue to be used to

reproduce experimental curves (Sone and Zoback, 2014; Rassouli and Zoback, 2018). These mod-

els, however, exhibit several deficiencies: (1) explicit-time functional forms do not account for the

dependence on stress path; (2) they perform poorly for cyclic loading–unloading as the characteris-

tic time changes; and (3) they lead to fundamental inconsistencies, such as stress relaxation inside

the elastic domain.

To address these fundamental limitations of time-explicit models of creep, we propose and de-

velop a viscoplastic model based on the concept of overstress, where the difference between the

active applied stress and the preconsolidation stress (the maximum stress that the sample has experi-

enced) is dissipated through a rate-dependent viscous flow (Perzyna, 1966). In particular, our model

relies on modified Cam-clay plasticity (Roscoe and Burland, 1968; Wood, 1990; Pietruszczak, 2010;

Borja, 2013) and Perzyna-type viscoplasticity (Perzyna, 1966). While Perzyna-type formulations

3
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have been used previously (e.g., Adachi and Oka, 1982; Kimoto et al., 2004; Chang and Zoback,

2010; Yin et al., 2010), these studies have used ad hoc functional forms of the viscoplastic multi-

plier. Instead, we derive it by imposing the principle of maximum plastic dissipation—also known

as penalty regularization of dissipation energy (Simo and Hughes, 1998). We illustrate the per-

formance of the new model by applying it to reproduce a series of experiments we conducted on

clay-rich and carbonate-rich shales (Rassouli and Zoback, 2018). The results show that the new vis-

coplastic model reproduces the short-term and long-term cyclic loading paths exceptionally well, a

feature that had heretofore remained elusive to constitutive modeling of creep.

VISCOPLASTIC MODEL

The volumetric response of geomaterials plays a significant role in their strength, and predicting

it requires tracking the evolution of the void ratio (Coussy, 1995). This is expressed trivially in

the small-deformation continuum kinematics, but it is less clear in the large-deformation range. In

this section, we describe a new viscoplastic model under large volumetric changes. The model is

developed within the class of Perzyna-type viscoplasticity models (Simo and Hughes, 1998), which

ensures that it is thermodynamically consistent during viscoplastic evolution, i.e., the dissipated

plastic energy during plastic flow remains positive (Lubliner, 1990; Pietruszczak, 2010).

Physically consistent volumetric decomposition in porous media. The kinematic relation for

volume change in a continuum is described by

v

V
= J ≡ det(F), (1)

where V is the initial volume (reference configuration), v is the volume in the current (deformed)

configuration, and F is the deformation gradient tensor (Truesdell and Toupin, 1960; Marsden and

4
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Hughes, 1983). In rate form, we can express

J̇ = J tr(d), (2)

where d ≡ symm(∇v) is the rate of deformation tensor, and v is the (spatial) velocity field. While

the volumetric strain has traditionally been defined as

εv =
v − V
V

, (3)

the proper definition in large deformations comes from integration of equation 2:

εv = lnJ = ln
v

V
(4)

Under large inelastic deformation, the common decomposition of the volumetric deformation

into its elastic and plastic parts is multiplicative, J = JeJp (Simo and Hughes, 1998). It is unclear,

however, how to relate these factors to the elastic and plastic evolution of the void ratio, which are

physical, measurable quantities.

Here, we define a new volumetric decomposition that is consistent with physical definitions and

can be directly related to geomechanical concepts. Any change in volume from the initial state will

be decomposed into elastic and plastic parts. Therefore, the total volume in the final (deformed)

configuration is expressed as v = V + ∆ve + ∆vp, or in rate form v̇ = v̇e + v̇p. Thus, we define

the deformed elastic and plastic volumes as vα = V + ∆vα, α = e, p, so that

J = Je + Jp − 1, where Jα =
vα

V
. (5)

Note that the volumetric changes can then be evaluated as εv = ln J, εev = lnJe, and εpv = lnJp.

Imposing the common geomechanical constraint of incompressibility of the solid grains relative to

the voids, i.e. vs ≈ Vs (Coussy, 1995), and recalling the definition of void ratio, e = vv/vs, we

5
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have ee = vev/vs, and ep = vpv/vs, and we can then relate elastic and plastic parts of the void ratio

to J for large volumetric changes:

ee = (1 + e0)Je − 1, ep = (1 + e0)Jp − 1. (6)

While incompressibility of the grains is certainly only an approximation, it is defensible even for

low-porosity media, especially in the regime of viscoplastic deformations without localized failure.

Indeed, ongoing experimental work on creep of shales utilizing in-situ x-ray techniques shows that

most of the creep volumetric strains are a result of the change in the volume of the pores (Rassouli

and Zoback, 2018).

The modified Cam-clay model. Here, we adapt the classical modified Cam-clay model (MCC)

to formulate the viscoplasticity framework (Roscoe and Burland, 1968; Borja, 2013). The modified

Cam-clay yield surface is described by the ellipse:

F(σ, εpv) =
q2

η2
F

+ p (p− py(εpv)) = 0. (7)

Here, p = −1
3 tr(σ) is the volumetric stress (or “pressure”), and q =

√
3
2s : s is the von Mises

stress, where s = σ + p1 is the deviatoric stress (1 is the unit tensor). py is the intercept of

the elliptic yield surface with the p-axis (the center of the ellipse is located at a ≡ py/2). ηF

is the slope of the critical state line (CSL) in p–q space. According to this model, the evolution

of the yield surface is a function of the plastic volumetric strain. Therefore, for the case of large

volumetric changes, py needs to be modified to account for the kinematic relations involving the

void ratio defined earlier.

Following the classical soil mechanics procedure of arriving at the evolution relations, we can

express the void ratio changes as

dee = −κ d(ln p), de = −λ d(ln p). (8)

6
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Substituting relations 6 into 8 and integrating, we obtain

py = py0 exp

(
1 + e0

λ− κ
(1− Jp)

)
. (9)

Note that in the classical expression for py, the term 1 − Jp is approximated as εpv, which can be

shown easily by a Taylor-series expansion.

Perzyna-type viscoplastic model. In Perzyna’s model, the plastic viscous flow is related to the

power of active stress (Perzyna, 1966). The active stress is defined as the distance between the

current state of stress and the yield surface. Here, we adopt the principle of maximum plastic dis-

sipation, by virtue of which we maximize the dissipation energy functional Dpµ (Simo and Hughes,

1998):

MAX
(σ,p)

Dpµ[σ∗, p∗; ε̇p, ε̇v
p] := σ∗ : ε̇p + p∗ ε̇pv −

1

2µ
〈F(σ∗, εpv)〉

2 . (10)

Solving relation 10 results in the definition of viscoplastic strain rates:

ε̇p = γ̇
nF
|nF |

, ε̇pv = γ̇
F,p
|nF |

, γ̇ =
〈F(σ, εpv)〉
µ(εpv)p

, nF =
∂F
∂σ

, F,p =
∂F
∂p

, (11)

where 〈·〉 = max(0, ·) denotes Macaulay brackets. Equations 11 imply that viscous flow is propor-

tional to the overstress, with a viscosity that depends on the plastic volumetric strain and acts as a

hardening function. We take a simple exponential dependence

µ(εpv) = µ0 exp(ζεpv), (12)

which introduces two parameters (reference viscosity µ0 and exponent coefficient ζ) and that, as we

will see, lead to excellent quantitative agreement with the experimental data.

Elastic response. From equations 6 and 8, the volumetric response of the material can be ex-

pressed as:

dee ≡ (1 + e0)dJe = −κdp
p
. (13)

7
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Expanding equation 13 and using the relations J̇e = Jε̇ev and J = (1 + e)/(1 + e0), we arrive at

the volumetric stress–strain relation in the elastic domain,

dp = K dεev with K =
1 + e

κ
p, (14)

where K is the bulk modulus, which is therefore pressure-dependent. As a result, the elasticity

tensor D is also pressure-dependent, i.e. D ≡ D(p). Our choice of a pressure-dependent elastic

model is motivated by its ability to capture the nonlinear elastic behavior of geomaterials (Borja,

2013). Strictly speaking, however, this choice does not preserve elastic energy during cycles of

loading–unloading (Zytynski et al., 1978). Preserving the elastic energy under cyclic loading would

require the use of a hyperelastic model of elasticity (Houlsby, 1985; Borja et al., 1997). The use of

hypoelasticity in the finite-deformation range also suffers from theoretical and computational issues

regarding objectivity and frame-invariance (see section 7.3 of Simo and Hughes (1998) for a detailed

discussion). While this formulation has proven sufficient for modeling of our shale samples, it may

need to be extended to employ Jaumann objective rates for soft clayey soils undergoing significant

volumetric deformation (Niemunis and Herle, 1997).

Summary and numerical implementation

At any given time step, the stress in the viscoplastic model is updated according to

σ ≡ σt + D : ε̇e∆t = σt + D : ∆ε− D : ε̇p∆t, (15)

where all the variables are evaluated at the current time step t+ ∆t unless specifically described by

a subscript of t. In equation 15, ε̇p is given by equation 11 with yield surface F(σ, εpv) given by the

MCC model (equation 7). ∆ε is the incremental strain, typically evaluated through finite-element

nonlinear iterations. The nonlinear stress update is then implemented as a return-mapping algorithm

(Simo and Ortiz, 1985; Simo and Hughes, 1998; Borja, 2013). As a result, the nonlinear strain

8
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residual takes the form r ≡ −∆ε+ ∆εe+ ∆εp, with ∆εe = D−1 : ∆σ and ∆εp = γ̇∆tnF/|nF |,

and the plastic multiplier is determined by rewriting γ̇ in residual form: ψ ≡ F/p − γ̇µ(εpv). The

return-mapping algorithm is then a Netwon iteration on variables (σ, γ̇):

r +
∂r

∂σ
: δσ +

∂r

∂γ̇
δγ̇ = 0,

ψ +
∂ψ

∂σ
: δσ +

∂ψ

∂γ̇
δγ̇ = 0,

(16)

where

∂r

∂σ
= D−1 + ∂pD−1 : ∆σ

∂p

∂σ
+ γ̇

∆t

|nF |

(
∂nF
∂σ
− 1

|nF |
nF

∂|nF |
∂σ

)
,

∂r

∂γ̇
= ∆t

nF
|nF |

,

∂ψ

∂σ
=
nF
p
− F
p2

∂p

∂σ
− γ̇ ∂µ

∂εpv

∂εpv
∂σ

,

∂ψ

∂γ̇
= −µ(εpv)−

(
∂py
∂εpv

+ γ̇
∂µ

∂εpv

)
∂εpv
∂σv

,

(17)

with initial value of γ̇ = {F/p}/µ. Solving the system of equations 16, the expressions for the

updates are

δγ̇ =
ψ − ∂σψ : E : r

∂σψ : E : ∂γ̇r− ∂γ̇ψ
,

δσ = −E : (r + ∂γ̇rδγ̇),

(18)

where E−1 = ∂σr and the normalization factor |nF | is given by |nF | = q2/η2
F +p2. The consistent

tangent operator takes the form

DT = E− (E : nF )⊗ (nF : E)

He −Hp +Hvp
, (19)

whereHe = nF : E : nF ,Hp = ∂F
∂py

p′y
∂F
∂p , andHvp = p( µ

∆t |nF |+ γ̇µ′ ∂F∂p ).

APPLICATION TO MODELING CREEP IN SHALE

To investigate the performance of the proposed model, we used the results of creep experiments

conducted on four rock samples. The details of these experiments are given in Rassouli and Zoback

9

Page 10 of 45GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 20  Society of Exploration Geophysicists.20

D
ow

nl
oa

de
d 

02
/1

2/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



(2018). Here, we present a brief summary of these creep lab tests, and show that the new model

reproduces the experimental observations accurately.

Experimental Procedure

Experiments were conducted on two sets of shale samples: clay-rich samples from the Haynesville

formation in northwest Louisiana and East Texas, and carbonate-rich samples from the Eagle Ford

formation in South Texas. Each set contained two core plugs; one with parallel and the other

with perpendicular bedding planes, oriented parallel to the axial loading axis. A summary of the

characteristics and mineralogy of these samples is given in Table 1.

Table 1: Characteristics and mineralogy of the samples used for triaxial creep experiments, from

Rassouli and Zoback (2018).

The creep experiments were performed in a triaxial loading apparatus following a cyclic pattern,

with each cycle including four stages: loading, creep, unloading and rebound. We loaded the sam-

ples to a certain value of deviatoric (differential) stress, kept the load constant so that the samples

creep for a period of three to four hours, unloaded the sample to the minimum loading capacity of

the triaxial system, and let the sample rebound for a similar time span as for the creep stage. These

four loading steps were then repeated for one day, one week and four weeks to study the effect of

experimental time on the prediction of creep behavior of shale (Figure 1).

The confining pressure for all the samples was 40 MPa during all the loading steps. The devi-

atoric stress for sample HV35 was increased to 30 MPa at the creep stages, while this value was

equal to 40 MPa for all other samples. The applied load in the first cycle promotes closure of the

10
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Figure 1: Time-cycling loading and unloading during the triaxial creep experiments. Shown here is

the loading path for sample HV37, for which the differential stress for all the creep stages is equal

to 40 MPa.

micro-fractures initiated in the samples as a result of the changes in environmental conditions from

the reservoir to surface pressure and temperature.

Parameter identification

The initial void ratio of the sample is reported as e0 = 0.15 (Rassouli and Zoback, 2018), and

the Poisson ratio is measured independently and taken as ν = 0.2. The critical state parameter is

assumed to be ηF = 1.3. Note that this parameter is not directly measured in the experiments—as

the stresses stay well below the critical state line—but it is taken within the range from different

studies (Kutter and Sathialingam, 1992; Vermeer and Neher, 1999; Pietruszczak, 2010). These

parameters are taken as known. Our first approach to identify the viscoplastic model parameters is

to split them into two disjoint sets: yield-stress and creep parameters.

Yield stress parameters. To define the yield stress relation (equation 9), we need to identify

the parameters py0, κ, and λ. In a triaxial setup, these parameters can be inferred from the void

ratio–effective pressure plots. The experimental data for sample HV35 (Figure 2) indicate an al-

most linear-elastic loading followed by time-dependent deformation at constant pressure. There-

fore, while κ can be accurately evaluated from the unloading paths, this is difficult for py0 and λ

due to lack of time-independent plastic deformation. Acknowledging this uncertainty, and using

11
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equation 9, the mean value for λ parameter is estimated as λ = 0.0146 from the loading paths.

The mean value of κ from the unloading paths is evaluated as κ = 0.0127. The value of the ratio

λ/κ is well outside the typical range (∼ 5–20), and thus we set λ = 2κ. Similarly, estimating the

preconsolidation stress py0 is not possible from the experimental e–p curve, again due to the lack

of rate-independent inelastic deformation. From the nominal reservoir conditions for sample HV35

(50–75 MPa horizontal stress, and 92 MPa vertical stress (Rassouli and Zoback, 2018)), the equiv-

alent preconsolidation stress is 64–80 MPa. However, the process of extreme decompression from

reservoir to surface conditions can easily alter the microfabric of the rock, rendering the effective

preconsolidation stress upon loading during the triaxial tests very different. Here, we use a value of

py0 = 50 MPa—otherwise F would be very small and would not result in viscoplastic deformation.

It is clear that these parameters are subject to large uncertainty due to lack of enough data in the

plastic region. We will later show how a gradient-descent optimization approach can improve the

estimation of these parameters.

Figure 2: Evolution of void ratio e vs. pressure p during all four loading–creep–unloading–rebound

cycles, for sample HV35.

Creep parameters. To evaluate the viscoplastic parameters, we analyze the time-dependent part

of the deformation history. The viscosity function µ = µ(εpv) can be evaluated from equation 11.

Re-writing this equation, we have

µ =
1

ε̇pv

〈F(σ, εpv)〉
p

∂pF
|nF |

=
1

ε̇pv

1

p

(
q2

ηF p
+ (p− py(εpv))

)
(2p− py(εpv)). (20)

Since there is no direct measurement of ε̇pv, we first perform a best-fit on the εpv data and then

12
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evaluate its time derivative. We assume a function of the form εpv = a log(bt+c), which provides an

excellent fit to the data (Figure 3a), and from which the time derivative is obtained, ε̇pv = ab/(bt+c).

We now evaluate the plastic viscosity µ from the triaxial experiments via equation 20, and

perform curve-fitting of the data with the exponential functional form in equation 12. This results

in an excellent fit to the data, with parameter values µ0 = 4.13 × 106 MPa.s and ζ = 4.73 × 103)

(Figure 3b).

Figure 3: (a) Evolution of volumetric creep deformation εpv vs time, with experimental data (red

points) fit by a logarithmic function (black line). (b) Evolution of the plastic viscosity µ as a function

of volumetric creep deformation εpv, with data from the theoretical relation in equation 20 (red

points) fit by an exponential function (black line). Data are for sample HV35.

Model predictions via 3D finite-element simulation

From the two-step procedure described in the previous section, we identified the following model

parameters for the HV35 sample (Haynesville clay-rich shale): ν = 0.2, ηF = 1.29, κ = 0.0127,

λ = 0.0254, py0 = 50 MPa, µ0 = 4.13 × 106 MPa s, and ζ = 4.73 × 103. We are interested in

determining the model predictions for this set of parameters, and contrasting them with the actual

measurements of axial strain during the multiscale, multicycle creep experiments.

While it would be possible to do this by performing a single-degree-of-freedom calculation (in

effect, a stress-driven integration of equation 15), we decided to implement the model in the finite-

element code ABAQUS (Simulia, 2018), and reproduce the experimental conditions with a full 3D

simulation with implicit time-stepping that incorporates the time-varying boundary conditions of
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the triaxial setup (see Appendix , Figure 6).

The result of the simulation is shown in Figure 4. It is apparent that the model can reproduce

the time-dependent cyclic features of the creep experiment. Because this is done in the framework

of viscoplasticity, the time-dependent deformation is stress-driven and not controlled by an explicit

relaxation-time parameter. We hypothesize that this is the reason why the response can be captured

with a single set of parameters, despite the fact that the load–creep–unload–rebound cycles vary in

duration from a few hours (first cycle) to a few weeks (fourth cycle).

Figure 4: Comparison of axial strain from the laboratory experiment of sample HV35 (red) and the

3D finite-element simulation with implicit time integration of our viscoplastic model (black), with

the initial identification of model parameters.

Optimized parameter identification and model validation

In the previous section, we showed that the new viscoplastic model can reproduce the cyclic and

time-dependent response of the creep deformation experiment. However, the simple procedure

we used for the parameter identification—separately for the yield stress parameters (κ, λ and py0

from the compression curve, Figure 2) and for the viscous deformation parameters (µ0 and ζ from

the creep deformation versus time curve, Figure 3)—means that the agreement between model

predictions and experimental data is not quantitatively accurate (Figure 4).

To improve parameter identification, we employ an iterative procedure that minimizes a cost

function based on the L2-norm of the mismatch between measured (ε̂) and simulated (ε(α)) axial
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strain vs time:

I(α) ≡
∫ T

0
(ε(t;α)− ε̂(t))2 dt, (21)

where α = (κ, λ, py0, µ0, ζ) is the vector of parameters to be determined. Due to the short time

periods of the cyclic loading at the start of the experiment, the use of actual time results in a better fit

of the late times, while use of logarithmic time results in a better fit of the early times. Since we are

particularly interested in the accurate evaluation of λ and py0, we use the expression in equation 21

as the cost function, with a logarithmic rescaling of time. We use a standard gradient-descent

algorithm to perform the minimization, and initialize the iteration using the two-step methodology

described in the previous section. The result of the parameter identification for all four samples

using this approach is reported in Table 2, and the performance of the model in reproducing the

experimental data is shown in Figure 5. The results of the parameter optimization are relatively

insensitive to the value of the critical-state parameter ηF (see Figure 9 and Table A-1 in Appendix ).

In practice, the optimization algorithm would be applied to the pointwise stress evolution (at the

“Gauss point level”). Given that it is a low-dimensional problem with only five parameters, the

entire optimization procedure takes orders of magnitude less time and computational resources than

a typical full-scale simulation for a real-world engineering problem.

Table 2: Model parameters for carbonate-rich shale samples from the Eagle Ford formation (EH5

and EV8), and clay-rich shale samples from the Haynesville formation (HV35 and HH37).
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Figure 5: Comparison of axial strain from the laboratory experiments (gray dotted lines) and the 3D

finite element simulation with implicit time integration of our viscoplastic model (black solid lines)

for all four samples: EH5 and EV8 are carbonate-rich shales from the Eagle Ford formation; HV35

and HH37 are clay-rich shales from the Haynesville formation. Simulation curves correspond to the

optimized parameters obtained from minimizing the cost function in equation 21.

DISCUSSION

Figure 5 clearly shows that the proposed viscoplastic model of creep provides an excellent quan-

titative agreement with the deformation behavior of shale measured in triaxial experiments. The

obvious disparity between model and experiments for the EH5 sample is due to a read-out issue in

the strain gauge after the first loading cycle.

The model exhibits the remarkable ability to capture the deformation behavior for multi-staged,

multiscale loading cycles (note the logarithmic scale of the time axis in Figure 5). This central

feature of the model is the result of the overstress-driven formulation (Perzyna, 1966; Simo and

Hughes, 1998), and sets our model apart from existing models of creep (Finnie and Heller, 1959;

Scholz, 1968; Carter et al., 1981; Dudley et al., 1998; Vermeer and Neher, 1999; Yin et al., 2010),

which employ a time-explicit viscoplastic function—something that requires setting a characteristic

time for stress relaxation, which, by definition, prevents capturing the material’s time-dependent

deformation under disparate periods of creep between loading and unloading (Sone and Zoback,

2014; Rassouli and Zoback, 2018).

When using the optimized model parameters in Table 2, the model improves the fit to the data
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significantly with respect to the initial parameters (compare Figure 5 and Figure 4 for HV35). In

this particular case, the improvement in model performance can be attributed to the refined iden-

tification of parameters κ and py0. An interesting and nonintuitive outcome from our analysis is

that the preconsolidation stress py0 should be understood as a fitting parameter in our model (and

probably in other soil- and rock-mechanics models), when the samples are subject to unconstrained

decompression from reservoir conditions, likely generating microfractures and altering the fabric of

the rock.

The model parameters all have a physical interpretation. This is illustrated directly by analyz-

ing the sensitivity to each parameter around the optimum (Appendix , Figure 7). It is informative

to analyze the shape of the cost function I(α) (equation 21) in the neighborhood of the optimum

(Appendix , Figure 8). As function of parameters κ, py0, µ0 and ζ, the cost function exhibits a

pronounced minimum, implying that a gradient-descent optimization procedure will quickly con-

verge to the optimum value of those parameters. This is not the case, however, for parameter λ:

the cost function is flat over a wide range of values—a behavior that indicates that the parameter

is poorly constrained by the data (Appendix , Figure 8). In our case, this is due to a lack of strain

measurements in the rate-independent plastic deformation regime.

CONCLUSIONS

In this study, we propose a model for the time-dependent deformation (creep) of geomaterials under

cyclic loading. Current modeling approaches rely on the imposition of a characteristic relaxation

time, something that prevents their applicability to the case of loading cycles with disparate time

scales. Here we address this issue by developing a modeling framework that extends the well-known

Cam-clay plasticity model to simulate creep through a Perzyna-type viscous deformation flow.
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We validate the new viscoplastic model by simulating recent long-term and cyclic creep ex-

periments on shale-rock samples, and show that the new model reproduces the experimental re-

sults accurately. By using a gradient-descent training approach to minimize the discrepancy be-

tween experimental results and simulations, we find that the preconsolidation stress—reflecting the

mechanical-state alteration of the rock samples as a result of drilling and underground retrieval

operations—should be understood as a model parameter rather than a material parameter, and one

that is subject to large variability and uncertainty.

An important aspect of the newly developed model is that it honors crucial properties such as

positive energy dissipation during plastic and viscoplastic evolution, and stress relaxation towards

the yield surface. It also guarantees the stability of its implementation in finite-element codes of

mechanical deformation, including an efficient return-mapping algorithm for the nonlinear iterations

at each time step. Coupling with fluid flow is straightforward by using Biot poroelasticity in the

elastic domain, and understanding stresses as effective stresses, σ′ = σ + bpf1, where pf is the

fluid pressure, and b is the Biot coefficient. The validation of our model as an effective stress model,

however, would require dedicated additional experiments, in which the samples are saturated with

fluid and loaded under different pore pressures. The water content of the samples we worked with

was small (1% for the Haynesville and 0.3% for the Eagle Ford samples, and the experiments were

performed at ambient temperature. We are currently working on creep experiments at reservoir

temperatures, and the results and the modeling will be reported in future work. An interesting

extension of the model is consideration of anisotropy (both in deformation and strength response)—

a feature that is required for the accurate modeling of many geomaterials, including shales.
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APPENDIX A

SUPPLEMENTAL FIGURES AND TABLES

In this appendix we provide additional details regarding the model application in a 3D FEM simu-

lation (Figure 6), sensitivity analysis (Figure 7), parameter identification (Figure 8), and evolution

of the yield surface (Figure 9). Finally, we also provide a summary of the model parameters for all

the shale samples that we studied (Table A-1).

Table A-1: Model parameters for carbonate-rich shale samples from the Eagle Ford formation (EH5

and EV8) and clay-rich shale samples from the Haynesville formation (HV35 and HH37) for dif-

ferent values of the critical-state parameter ηF = 1.0, 1.3, 1.6.

APPENDIX B

COMPARISON WITH A CLASSICAL MODEL OF VISCOPLASTICITY

It proves useful to contrast our proposed model with the classical Vermeer and Neher (1999) model

of creep in rocks. In the latter model, the volumetric deformation is evaluated from classical soil
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Figure 6: (a) Stress loading function as a function of time for sample HV35, reproducing the four

cycles of loading–creep–unloading–rebound (note logarithmic time axis). (b) Schematic of the

3D finite-element simulation setup, reproducing the experimental conditions of the triaxial tests for

sample HV35. The displacement in the z-direction is restrained at the bottom boundary, i.e. uz = 0.

The model is initialized with normal stress p = 40 MPa on the side boundary and q0 = 9 MPa on

the top boundary to replicate the experiment’s initial stress state. Then a cyclic load of q = 21 MPa

is applied over time, as shown in figure (a). The experiments involve a constant state of stress, and

therefore the number of elements does not play a role in these simulations—something that we have

checked. Similarly, we use a sufficiently large number of time steps (1000 time steps per loading

cycle) such that the results are independent of this choice.

Figure 7: Sensitivity of modeled axial strain to parameters κ, λ, py0, µ0, and ζ, for sample HV35.

The model response is obtained varying one parameter at a time, around the optimum parameter set

obtained from gradient-descent optimization.

mechanics concepts as

ε̇pv =
µ/(1 + e)

t+ τc

(
pa
py

)λ−κ
µ

, (B-1)

where µ and τc are model parameters, pa is defined as p + q2/(η2
F p) and, importantly, t is the

time of creep deformation. It is worth noting that the number of creep parameters in our model (µ

and ζ) is the same as in the Vermeer and Neher (1999) model (µ and τc). From equation B-1, the

plastic multiplier γ̇ and therefore the plastic strain tensor ε̇p are fully defined. The time variable t
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Figure 8: Sensitivity of the cost function used in the optimization to parameters κ, λ, py0, µ0, and

ζ, for sample HV35. The cost function is evaluated by varying one parameter at a time, around the

optimum parameter set obtained from gradient-descent optimization. As function of parameters κ,

py0, µ0 and ζ, the cost function exhibits a pronounced minimum, implying that a gradient-descent

optimization procedure will quickly converge to the optimum value of those parameters. This is not

the case, however, for parameter λ: the cost function is flat over a wide range of values—a behavior

that indicates that the parameter is poorly constrained by the data, and results in relatively slow

convergence (typically 100 to 200 iterations) of the gradient-descent algorithm. In this case, this is

due to a lack of strain measurements in the rate-independent plastic deformation regime.

Figure 9: Evolution of the yield surface for ηF = 1.0, 1.3, 1.6 associated to critical state line angles

φcs = 25.4◦, 32.2◦, 39.2◦, respectively. As can be seen here, the unit normal to the yield surfaces at

the intersection with the triaxial loading path from our experiments does not vary significantly. This

leads us to suspect that the choice of ηF does not significantly change our inference of the other

model parameters.

in this relation is difficult to reconcile with the theory of plasticity, where the stress difference from

the yield surface drives the evolution of plastic deformations. In particular, for cyclic loading, it is

unclear the point at which the reference for t should be set.

To validate our implementation of the Vermeer and Neher (1999) model, we use the undrained

problem reported in their work (Vermeer and Neher, 1999). The material parameters are taken as
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ν = 0.25, κ = 0.025, λ = 0.1575, φcs = 32◦, µ = 0.006, τc = 24 hours, assuming an initial void

ratio of e0 = 0.5. The results of undrained axial loading (Figure 10) match precisely those reported

in Vermeer and Neher (1999).

Figure 10: Results from the simulation reported in Vermeer and Neher (1999) for modeling vis-

coplastic deformation under undrained loading conditions (i.e., εv = 0 or ε22 = ε33 = −ε11/2)

for axial strain rates of 0.00094 %/min, 0.15 %/min, and 1.1 %/min. Left: Evolution of p and q vs.

axial strain. Right: Evolution of stresses in p–q space.

To further test the models, we simulate an uniaxial compression test subject to an initial stress

of p0 = 373 kPa and a deviatoric stress q = 500 kPa. The axial load q is increased linearly within

one day and kept fixed for nine days. Since this is a stress-controlled experiment, we take the final

displacement from Vermeer’s model as the reference curve and evaluate parameters of our proposed

model using the optimization technique described in the main manuscript, leading to parameter

values κ = 0.039, λ = 0.251, µ = 6.45 × 104, ζ = 135.7, py0 = 448 kPa. Since the plastic

deformation mechanism is different for each model, the parameters providing a best match (Figure

11) are also different.

In Figure 12 we plot the evolution of pa and py as well as F = pa − py. After a sufficiently

long time, the system should reach a new equilibrium with a new preconsolidation stress and yield-

surface satisfying the new stress state. This is indeed the case for our viscoplastic model: the yield

surface grows and becomes tangent to the applied active stress (point A), indicating a proper dissi-

pation of the excess stresses through time-dependent plastic deformation. This behavior implies that

the yield function F becomes positive initially and then asymptotes back to zero (point B), illus-
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trating the behavior of a Perzyna-type model. In contrast, the Vermeer model predicts an evolution

in which the yield surface overshoots the applied active stress—a thermodynamically incompatible

stress state.

Figure 11: Uniaxial compression test with initial confining pressure of 373 kPa and deviatoric stress

of q = 500 kPa applied in one day and kept fixed for 500 days. Solid lines indicate our proposed

model and dash-dotted lines represent the Vermeer and Neher (1999) model.

Figure 12: Evolution of pa = p+ q2/(η2
F p), py, and F = pa − py as a function of time. Solid lines

indicate results from our proposed model, and dash-dotted lines represent the Vermeer and Neher

(1999) model.
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Figure 1. Time-cycling loading and unloading during the triaxial creep experiments. Shown here is the 
loading path for sample HV37, for which the differential stress for all the creep stages is equal to 40~MPa. 
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Figure 2. Evolution of void ratio~$e$ vs. pressure~$p$ during all four loading--creep--unloading--rebound 
cycles, for sample HV35. 
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Figure 3. (a)~Evolution of volumetric creep deformation~$\varepsilon_v^p$ vs time, with experimental data 
(red points) fit by a logarithmic function (black line). (b)~Evolution of the plastic viscosity~$\mu$ as a 
function of volumetric creep deformation~$\varepsilon_v^p$, with data from the theoretical relation in 

equation~ ef{eq:mu_theory} (red points) fit by an exponential function (black line). Data are for sample 
HV35. 
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Figure 4. Comparison of axial strain from the laboratory experiment of sample HV35 (red) and the 3D finite-
element simulation with implicit time integration of our viscoplastic model (black), with the initial 

identification of model parameters. 
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Figure 5. Comparison of axial strain from the laboratory experiments (gray dotted lines) and the 3D finite 
element simulation with implicit time integration of our viscoplastic model (black solid lines) for all four 

samples: EH5 and EV8 are carbonate-rich shales from the Eagle Ford formation; HV35 and HH37 are clay-
rich shales from the Haynesville formation. Simulation curves correspond to the optimized parameters 

obtained from minimizing the cost function in equation~ ef{eq:I_eps}. 
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Figure A1. (a)~Stress loading function as a function of time for sample HV35, reproducing the four cycles of 
loading--creep--unloading--rebound (note logarithmic time axis). (b)~Schematic of the 3D finite-element 

simulation setup, reproducing the experimental conditions of the triaxial tests for sample~HV35. The 
displacement in the $z$-direction is restrained at the bottom boundary, i.e. $u_z=0$. The model is 

initialized with normal stress $p=40~ extnormal{MPa}$ on the side boundary and $q_0=9~ 
extnormal{MPa}$ on the top boundary to replicate the experiment's initial stress state. Then a cyclic load of 
$q=21~ extnormal{MPa}$ is applied over time, as shown in figure~(a). The experiments involve a constant 
state of stress, and therefore the number of elements does not play a role in these simulations---something 

that we have checked. Similarly, we use a sufficiently large number of time steps (1000 time steps per 
loading cycle) such that the results are independent of this choice. 
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Figure A2. Sensitivity of modeled axial strain to parameters $\kappa$, $\lambda$, $p_{y0}$, $\mu_0$, and 
$\zeta$, for sample~HV35. The model response is obtained varying one parameter at a time, around the 

optimum parameter set obtained from gradient-descent optimization. 
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Figure A3. Sensitivity of the cost function used in the optimization to parameters $\kappa$, $\lambda$, 
$p_{y0}$, $\mu_0$, and $\zeta$, for sample~HV35. The cost function is evaluated by varying one 

parameter at a time, around the optimum parameter set obtained from gradient-descent optimization. As 
function of parameters $\kappa$, $p_{y0}$, $\mu_0$ and $\zeta$, the cost function exhibits a pronounced 

minimum, implying that a gradient-descent optimization procedure will quickly converge to the optimum 
value of those parameters. This is not the case, however, for parameter~$\lambda$: the cost function is flat 
over a wide range of values---a behavior that indicates that the parameter is poorly constrained by the data, 

and results in relatively slow convergence (typically 100 to 200~iterations) of the gradient-descent 
algorithm. In this case, this is due to a lack of strain measurements in the \emph{rate-independent} plastic 

deformation regime. 
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Figure A4. Evolution of the yield surface for $\eta_F=1.0, 1.3, 1.6$ associated to critical state line angles 
$\phi_{cs}=25.4^\circ, 32.2^\circ, 39.2^\circ$, respectively. As can be seen here, the unit normal to the 

yield surfaces at the intersection with the triaxial loading path from our experiments does not vary 
significantly. This leads us to suspect that the choice of $\eta_F$ does not significantly change our inference 

of the other model parameters. 
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Figure B1. Results from the simulation reported in \cite{vermeer1999soft} for modeling viscoplastic 
deformation under undrained loading conditions (i.e., $\varepsilon_v=0$ or 

$\varepsilon_{22}=\varepsilon_{33}=-\varepsilon_{11}/2$) for axial strain rates of $0.00094$\;\%/min, 
$0.15$\;\%/min, and $1.1$\;\%/min. Left: Evolution of $p$ and $q$ vs. axial strain. Right: Evolution of 

stresses in $p$--$q$ space. 
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Figure B2. Uniaxial compression test with initial confining pressure of $373$~kPa and deviatoric stress of 
$q=500$~kPa applied in one~day and kept fixed for 500~days. Solid lines indicate our proposed model and 

dash-dotted lines represent the \citet{vermeer1999soft} model. 
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Figure B3. Evolution of $p_a=p+q^2/(\eta_F^2p)$, $p_y$, and $\mathcal{F}=p_a-p_y$ as a function of 
time. Solid lines indicate results from our proposed model, and dash-dotted lines represent the 

\citet{vermeer1999soft} model. 
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Table 1: Characteristics and mineralogy of the samples used for 
triaxial creep experiments, from Rassouli and Zoback, 2018.

Samp
le

Formatio
n

Orientat
ion

Carbon
ate

Wt. %

Cla
y

Wt. 
%

TO
C
Wt
. 
%

Water
Conte
nt 
%

Bulk
Densi
ty

(gr/c
m3)

Final 
Porosi

ty 
%

HV35 Haynesvi
lle Vertical 7 62 1.

6 1 2.47 8.1

HH37 Haynesvi
lle

Horizont
al 7 62 1.

6 1 2.47 8.1

EV8 Eagle 
Ford Vertical 51.3 20 4.

7 0.3 2.45 4.3

EH5 Eagle 
Ford

Horizont
al 85.0 3 3.

0 0.3 2.45 5.9
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Table 2: Model parameters for carbonate-rich shale samples from the 
Eagle Ford formation (EH5 and EV8), and clay-rich shale samples from 
the Haynesville formation (HV35 and HH37).

EH5 EV8 HV35 HH37
𝜅 4.05 4.58 8.86 3.16 10-3

𝜆 5.09 7.45 29.30 56.60 10-3
𝜇0 17.44 50.29 9.69 152.0 106 MPa s
𝜁 11.92 11.37 4.33 32.01 103

𝑝0 34.35 38.94 43.17 49.93 MPa
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Table A-1: Model parameters for carbonate-rich shale samples from the 
Eagle Ford formation (EH5 and EV8) and clay-rich shale samples from 
the Haynesville formation (HV35 and HH37) for different values of the 
critical-state parameter .ηF = 1.0, 1.3, 1.6

η𝐹 EH5 EV8 HV35 HH37
𝜅 4.05 4.33 8.75 3.06 10-3

𝜆 5.09 7.09 22.35 56.72 10-3
𝜇0 17.44 57.0 3.94 152.1 106 MPa s
𝜁 11.92 14.66 6.61 35.65 103

1.00

𝑝0 34.35 39.38 46.33 50.95 MPa
𝜅 4.05 4.58 8.86 3.16 10-3

𝜆 5.09 7.45 29.30 56.60 10-3

𝜇0 17.44 50.29 9.69 152.0 106 MPa s

𝜁 11.92 11.37 4.33 32.01 103
1.30

𝑝0 34.35 38.94 43.17 49.93 MPa
𝜅 3.81 4.60 8.77 3.16 10-3

𝜆 5.16 7.80 22.44 56.60 10-3

𝜇0 7.20 84.15 3.51 152.0 106 MPa s

𝜁 7.64 8.30 3.35 31.59 103
1.60

𝑝0 31.67 38.11 43.22 49.60 MPa
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